当前位置:首页 >> 油管接头

下一代光传送网ASON技术激光灯

2022-07-14 16:09:04  重齿机械网

下一代光传送ASON技术

摘要:提出当今解决光传送所面临问题的方法,是采用既能低成本建又能智能化完成交换连接的自动交换光络(ASON);介绍回顾了光传送ASON技术的产生和取得的成果,以及ASON中几种关键控制平面技术的发展情况;阐述了ASON控制平面与传统传送的本质区别、管理平面智能化管理特点所带来的3种优点,以及传送平面中光交叉连接(OXC)的6种主要交换结构、发展方向和存在的主要问题;最后综述了新一代基于数字同步乐高公司官员之前曾表示过系列(SDH)提供多种业务、集成传输、交换和路由功能的多业务传送平台(MSTP)技术,并描述其新功能和远期目标。

关键词:自动交换光络通用多协议标签交换控制平面管理平面传送平面

0引言

近年来,随着骨干上IP等数据业务的爆炸性增长,波分多路复用(WDM)技术广泛应用于络中,并提出了“IP over WDM”组模型,这种模型省去ATM甚至SDH/SONET层面,同时只须“过度建设(overbuild)”超大容量的光传送,就可以保证IP业务的服务质量(QoS)。然而,这种络模型的建方式价格昂贵,其主要原因是SDH传送分组(POS)接口和WDM系统的波长转换器(OTU)价格较昂贵,过度建设的策略会使络成本居高不下。因此,有必要建立一种新的络体系结构,以便更经济有效地支持未来的大容量数据业务[1]。IP数据业务也具有突发性和不确定性,这为通过对光络带宽实行动态分配和调度、实现有效的络优化提供了契机。一种既能大规模降低建成本,又能提高带b787⑴0型飞机虽是用复合材料打造的宽利用率的新型络体系结构----自动交换光络(ASON)应运而生。

1光传送ASON技术的发展

2000年3月,国际电信联盟标准部(ITU-T)SGl3会议正式提出并开始规范ASON。它的诞生是为了适应光传送在发展过程中对智能化和自动化的迫切需求,其目标是实现高效率光传送层面上的智能标准化。ITU-T的智能光络标准称为on/tn。目前,ITU-T的工作停留在定义和制定体系结构阶段。

2000年7月,朗讯采用贝尔实验室的一项革命性成果----基于微电子机械系统(MEMS)技术的256×256矩阵光开关,推出全球第一个真正意义的光波长路由器(WaveStar LambdaRouter),以此为标志业界拉开ASON设备研制的序幕,但不久在全球电信市场低迷的背景下,大部分产品停止开发,ASON产品的推出进程戛然而止。然而,关于ASON的重大研究计划并没有停止。欧洲电信研究和战略研究所支持几项关于ASON的重大研究计划,我国的“863”计划也支持ASON项目。

基于电交叉的自动交换传输已投入商用,美国AT&T公司在全国范围敷设了连接100个城市的智能光络,由100台CIENA光交换机和800多台SONET多业务平台构成。前者完成以45 Mbit/s为基础带宽颗粒的实时交换和动态调配,后者在络边缘把低速业务汇聚至2.5 Gbit/s或10Gbit/s速率。新络降低成本、提高带宽利用率、简化络结构层次,使全的恢复时间缩短到数百毫秒。

2ASON的分层体系结构

ASON是可智能化完成光络交换连接功能的下一代光传送。它通过自动邻居发现、自动业务发现、选路算法、光通路管理和端到端保护等功能的相互协调,建立一种可行、可靠的保护恢复机制,实现络资源和拓扑结构的自动发现,提供智能光路由,并提供分布式智能恢复算法[2],是一种具有高灵活性、高可扩展性的基础光络设施。它能在光层上直接提供服务,快速满足用户需求,有效解决络可扩展性、可管理性、快速配置用户带宽、对用户带宽提供端到端保护等问题,便于开展波长批发、波长出租、带宽贸易、按使用量付费、光VPN和动态路由分配等业务。

从功能层面来讲,ASON由控制平面、管理平面和传送平面三大平面组成[3]。

与传统光传送相比较,ASON的一个明显不同就是引入控制平面,使整个光络出现前所未有的变化,ASON的3个平面分别完成不同功能。与传统络类似,传送平面仍负责传送业务,但这时传送平面的动作却是在控制和管理平面的作用下进行的;控制和管理平面能对传送平面的资源进行操作,这些操作是通过传送平面与控制和管理平面之间的接口完成的[3]。同时,管理平面起到高层管理者的作用。管理平面中有3个管理器:控制平面管理器、传送平面管理器和资源管理器,这3个管理器是管理平面与其他平面之间实现管理功能的代理。此外,从图1还可看出,在控制平面与其他平面之间也存在??平面之间功能的协调和对传送平面资源的管理操作[4]。

3ASON的控制平面

智能光络的特征在于能根据用户的需求动态分配光通道。由于控制平面的引入,使光络中原本固定静态的连接逐步演变成3种类型:永久性连接(PC)、软永久性连接(SPC)和交换连接(SC)[5]。PC和SC都可由控制平面中的信令和路由技术来实现,唯一的差别在于SPC是在络边缘存在永久连接,利用络内部的SC来提供络边缘PC之间的端到端连接。

在未来的智能光络中,将由控制平面快速有效地配置SPC和SC。正是由于SC的引入,才有了根据用户需求产生恰当光通道的能力。这种能力与ASON中控制平面的作用息息相关,如果没有控制平面,ASON就不具备自动交换能力,就没有智能化的灵魂。控制平面由信令络支持,它由多种功能部件组成,包括一组通信实体和控制单元(光连接控制器(OCC))及相应接口。这些功能部件主要用于调用传送平面的资源,以提供与连接的建立、维持和拆除(释放络资源)有关的功能。

目前,涉及智能光络标准工作的国际标准组织和准标准组织有ITU-T、光互联论坛(OIF)和因特工程任务组(IETF),每个组织都有一整套自己的结构原理和要求,并据此开发控制平面机制[6]。

ITU-T采用传统的从上往下设计方法,主要负责络体系结构、络性能、设备功能要求和物理层规范等,已完成一系列标准,称为on/tn。就按0.77欧元/千克缴费例如:G.8070定义自动交换传送(ASTN)总体要求;G.8080定义ASON结构;G.7713定义协议独立的分布式呼叫和连接管理信令;G.7713.1定义基于专用口间接(PNNI)的DCM信令;G.771.3.2定义使用通用多协议标签交换(GMPLS)RSVP-TE的DCM信令;G.7713.3定义使用GMPLS CR-LDP的DCM信令;G.7714定义ASON/ASTN中的自动发现技术;G.7715定义在ASON中建立SC和SPC选路功能的结构和要求;G.7716定义ASON链路管理。

IETF着重规范具体协议和信令,正利用现有信令协议的扩展和修改来开发ASON控制平面,该组织于1999年提出多协议波长交换(MPLambdaS),并于2001年正式提出开发面向光络的GMPLS协议。GMPLS协议拓展了传统的MPLS协议和MPLambdaS协议,支持多种类型的交换,包括时分复用(TDM,如SDH时分交换)、波长和空间交换(如端口交换和光纤交换等),络节点所作出的转发决定是基于时隙、可进行正弦载荷下的3点曲折实验、4点曲折实验、薄板材拉伸实验、厚板材拉伸实验、强化钢条拉伸实验、链条拉伸实验、固接件实验、连杆实验、改变颓废实验、弯扭复合颓废实验、交互曲折颓废实验、CT实验、CCT实验、齿轮颓废实验.波长或物理端口和光纤编号的最初,IETF的信令要求主要基于对等模型(peermodel),即全平面结构,无明确的用户络接口(UNI)和络间接口(NNI)概念。

OIF的位置处于二者之间,其规范试图结合二者,但更多地基于结构式方法,即重叠模型。从ASON/ASTN控制面的结构原理和要求开始,主要规范UNI和NNI,目前已完成UNI 1.O版本,并演示了多厂家的互操作性,正在开发2.O版本,旨在增强接口功能,NNI的规范工作也有进展。 (end)

安卓新手入门教程
深度学习
Java项目面试
相关资讯
友情链接